Algebra I |
1 |
Big Idea 1: The relationship between the variables of a function can be represented visually by a graph. |
N-Q.1, N-Q.2, N-Q.3, F-IF.1, F-IF.4, F-IF.5, F-LE.1, F-LE.1b, F-LE.3, F-LE.5 |

Algebra I |
1 |
Big Idea 2: Functions can be represented in multiple, equivalent ways. |
N-Q.1, N-Q.3, F-IF.1, F-IF.2, F-IF.4, F-IF.5, F-IF.9, F-LE.1, F-LE.1b, F-LE.3 |

Algebra I |
1 |
Big Idea 3: Rate of change describes how one quantity changes with respect to another. |
F-IF.4, F-IF.6, F-IF.9, F-LE.1, F-LE.1b, F-LE.3, F-LE.5, S-ID.7 |

Algebra I |
1 |
Big Idea 4: Function families share similar graphs, behaviors, and properties. |
N-Q.2, F-IF.4, F-BF.3, F-LE.1, F-LE.1b, F-LE.3, F-LE.5 |

Algebra I |
2 |
Big Idea 1: A function’s rate of change and initial value determine its other properties and behaviors. |
F-IF.3, F-IF.4, F-IF.6, F-IF.7a, F-IF.7b, F-LE.1, F-LE.1a, F-LE.1b, F-LE.5 |

Algebra I |
2 |
Big Idea 2: Functions can be represented in multiple, equivalent ways. |
F-IF.2, F-IF.3, F-IF.4, F-IF.6, F-IF.7, F-IF.7a, F-IF.7b, F-BF.3, F-LE.1, F-LE.1b, F-LE.5 |

Algebra I |
2 |
Big Idea 3: Function rules describe the quantitative relationships between variables. |
F-IF.2, F-IF.3, F-IF.4, F-BF.1, F-BF.1a, F-BF.3, F-LE.1, F-LE.1a, F-LE.1b, F-LE.2, F-LE.5 |

Algebra I |
2 |
Big Idea 3: Functions within a family are transformations of the parent function. |
F-IF.2, F-IF.3, F-IF.4, F-BF.1, F-BF.1a, F-LE.1, F-LE.1a, F-LE.1b, F-LE.2, F-LE.5 |

Algebra I |
3 |
Big Idea 1: Linear functions are characterized by a constant rate of change. |
A-SSE.1, A-SSE.1a, A-SSE.1b, A-CED.1, A-CED.3, A-REI.11 |

Algebra I |
3 |
Big Idea 2: A solution is a value that makes a function rule true. |
A-SSE.1, A-SSE.1a, A-SSE.1b, A-CED.1, A-CED.3, A-CED.4, A-REI.1, A-REI.3, A-REI.11 |

Algebra I |
3 |
Big Idea 3: Linear functions can be represented in multiple, equivalent ways. |
A-SSE.1, A-SSE.1a, A-SSE.1b, A-APR.1, A-CED.1, A-CED.3, A-CED.4, A-REI.3, A-REI.11 |

Algebra I |
4 |
Big Idea 1: Systems of Equations (or Inequalities) contain functions that share the same set of variables. |
A-CED.2, A-CED.3, A-REI.10, A-REI.11, A-REI.12 |

Algebra I |
4 |
Big Idea 2: A solution simultaneously makes each function rule in a system of equations (or inequalities) true. |
A-CED.3, A-CED.4, A-REI.5, A-REI.6, A-REI.10, A-REI.11, A-REI.12 |

Algebra I |
4 |
Big Idea 3: The solution to a system of equations (or inequalities) can be represented in multiple, equivalent ways. |
A-CED.3, A-CED.4, A-REI.10, A-REI.11 |

Algebra I |
5 |
Big Idea 1: Quadratic functions are distinguished by a power of 2. |
F-IF.4, F-IF.5, F-IF.6, F-IF.7, F-IF.7a, F-IF.8, F-IF.9, F-BF.1, F-BF.1a |

Algebra I |
5 |
Big Idea 2: Equivalent representations of a function highlight different properties. |
F-IF.2, F-IF.3, F-IF.4, F-IF.6, F-IF.7, F-IF.7a, F-IF.7b, F-IF.9, F-LE.1, F-LE.1b, F-LE.5 |

Algebra I |
5 |
Big Idea 3: Functions within a family are transformations of the parent function. |
F-IF.4, F-IF.5, F-IF.7, F-IF.7a, F-IF.8, F-BF.1, F-BF.1a, F-BF.3 |

Algebra I |
6 |
Big Idea 1: Quadratic expressions can be written in multiple, equivalent ways. |
A-SSE.1a, A-SSE.1b, A-SSE.2, A-SSE.3, A-SSE.3a, A-SSE.3c, A-APR.1 |

Algebra I |
6 |
Big Idea 2: Quadratic functions have 0, 1 or 2 real roots. |
N-RN.3, A-SSE.1, A-SSE.1a, A-SSE.1b, A-SSE.2, A-SSE.3, A-SSE.3a, A-APR.3, A-CED.1, A-REI.4, A-REI.4b |

Algebra I |
6 |
Big Idea 3: Quadratic equations can be solved by rearranging the equation into an equivalent form. |
A-SSE.1a, A-SSE.1b, A-SSE.2, A-SSE.3, A-SSE.3b, A-CED.1, A-REI.4, A-REI.4a, A-REI.4b |

Algebra I |
6 |
Big Idea 4: Quadratic functions can be represented in multiple, equivalent ways. |
A-SSE.1, A-SSE.1a, A-SSE.1b, A-SSE.2, A-SSE.3, A-SSE.3a, A-SSE.3b, A-APR.1, A-APR.3, A-CED.1, A-REI.4, A-REI.4a, A-REI.4b |

Algebra I |
7 |
Big Idea 1: Measures of center are used to interpret univariate data. |
S-ID.1, S-ID.2, S-ID.3 |

Algebra I |
7 |
Big Idea 2: Visual models illustrate the correlation of bivariate data. |
S-ID.5, S-ID.6, S-ID.6a, S-ID.6b, S-ID.6c, S-ID.7, S-ID.8, S-ID.9 |

Algebra II |
1 |
Big Idea 1: Function families share similar graphs, behaviors, and properties. |
F-IF.4, F-IF.7c |

Algebra II |
1 |
Big Idea 2: Mathematical models illustrate the behavior of real-world situations. |
F-IF.4, F-IF.6, F-BF.1a, F-BF.1b, F-LE.2, F-LE.5 |

Algebra II |
1 |
Big Idea 3: Functions can be represented in multiple, equivalent ways. |
F-IF.4, F-IF.6, F-IF.7, F-IF.7c, F-IF.9, F-BF.1, F-BF.1a, F-BF.1b, F-LE.2, F-LE.5 |

Algebra II |
1 |
Big Idea 4: An inverse function is a function that “undoes” another function; if f(x) maps x to y, then f-1(x) maps y back to x. |
A-REI.1, A-REI.2, F-IF.4, F-BF.4, F-BF.4a, F-BF.4b, F-BF.4c, F-BF.4d |

Algebra II |
1 |
Big Idea 5: Functions within a family are transformations of the parent function. |
F-IF.4, F-BF.3 |

Algebra II |
2 |
Big Idea 1: Sequences are discrete functions defined by their rates of change. |
F-IF.3, F-BF.1a, F-BF.2, F-LE.2, F-LE.5 |

Algebra II |
2 |
Big Idea 1: Sequences are discrete functions defined by their rates of change. |
F-IF.3, F-BF.2, F-LE.2 |

Algebra II |
2 |
Big Idea 2: Exponential functions describe a common ratio at which variables change. |
N-RN.2, F-IF.7e, F-IF.8b, F-LE.2, F-LE.5 |

Algebra II |
2 |
Big Idea 2: Expressions can be written in multiple, equivalent ways. |
N-RN.1, N-RN.2, A-SSE.3c, F-IF.8b |

Algebra II |
2 |
Big Idea 3: Expressions with exponents can be written in multiple, equivalent ways. |
N-RN.1, N-RN.2, A-SSE.3, A-SSE.3c, F-IF.8, F-IF.8b, F-BF.1, F-BF.1a, F-LE.2, F-LE.5 |

Algebra II |
2 |
Big Idea 4: A logarithm is the inverse of an exponential function. |
F-IF.7, F-IF.7e, F-IF.8, F-BF.1, F-BF.4a, F-BF.4b, F-BF.4c, F-BF.5, F-LE.2, F-LE.4 |

Algebra II |
2 |
Big Idea 5: Mathematical models illustrate the behavior of real-world situations. |
A-SSE.3, A-SSE.3c, A-SSE.4, F-BF.1, F-BF.1a, F-BF.2, F-BF.5, F-LE.2, F-LE.4, F-LE.5 |

Algebra II |
3 |
Big Idea 1: The features of a periodic function repeat over a constant interval. |
F-IF.4, F-IF.7e |

Algebra II |
3 |
Big Idea 2: A circle is symmetrical and its points are related by a center and radius. |
F-TF.1, F-TF.8 |

Algebra II |
3 |
Big Idea 3: The Unit Circle illustrates properties of trigonometric functions. |
F-TF.1, F-TF.2, F-TF.8 |

Algebra II |
3 |
Big Idea 4: Trigonometric functions are characterized by the period and amplitude. |
F-IF.4, F-IF.7e, F-TF.2, F-TF.5 |

Algebra II |
4 |
Big Idea 1: The degree of a polynomial function determines its behaviors and properties. |
N-CN.9, A-APR.3, F-IF.4, F-IF.9, F-BF.3 |

Algebra II |
4 |
Big Idea 2: The structure of quadratic graphs and equations gives insights into their roots. |
N-CN.1, N-CN.2, N-CN.7, A-SSE.2, A-APR.3, A-REI.1, A-REI.2, A-REI.4, A-REI.4b |

Algebra II |
4 |
Big Idea 3: The structure of polynomial graphs and equations gives insights into their roots. |
N-CN.1, N-CN.2, N-CN.9, A-SSE.2, A-APR.2, A-APR.3, A-REI.1 |

Algebra II |
4 |
Big Idea 4: Mathematical models illustrate the behavior of real-world situations. |
A-SSE.4, A-APR.4, A-CED.1, A-REI.1, A-REI.6, A-REI.7, A-REI.11, G-GPE.2 |

Algebra II |
4 |
Big Idea 5: Rational functions describe the quotient of two polynomial functions. |
A-SSE.2, A-APR.2, A-APR.3, A-APR.6, A-CED.1, A-REI.1, A-REI.2, A-REI.4, A-REI.4b, F-BF.1, F-BF.1b |

Algebra II |
5 |
Big Idea 1: The accuracy of a prediction of a random event increases with the number of events considered. |
N-Q.2, S-CP.1, S-CP.2, S-CP.3, S-CP.4, S-CP.5, S-CP.6, S-CP.7, S-CP.8, S-MD.2, S-MD.3 |

Algebra II |
5 |
Big Idea 2: Probability calculations can be applied to solve problems and make decisions. |
N-Q.2, S-CP.4, S-CP.5, S-CP.6, S-CP.7, S-MD.2, S-MD.3, S-MD.4, S-MD.5, S-MD.5a, S-MD.5b, S-MD.6 |

Algebra II |
6 |
Big Idea 1: Measures of center are used to interpret univariate data. |
S-ID.1, S-ID.2, S-ID.3, S-ID.4, S-ID.5, S-ID.6 |

Algebra II |
6 |
Big Idea 2: Visual models illustrate the correlation of bivariate data. |
S-ID.4, S-ID.5, S-ID.6, S-ID.6a, S-ID.7, S-ID.8, S-ID.9, S-IC.1, S-IC.2, S-IC.4, S-IC.5 |

Algebra II |
6 |
Big idea 3: Statistical data from random processes can be predicted using probability calculations. |
S-IC.1, S-IC.3, S-IC.4, S-IC.5, S-IC.6 |

Geometry |
1 |
Big Idea 1: Congruent segments have equal measure. |
G-CO.1, G-CO.2, G-CO.12 |

Geometry |
1 |
Big Idea 2: Congruent angles have equal angle measure. |
G-CO.1, G-CO.2, G-CO.12 |

Geometry |
1 |
Big Idea 3: Congruent parts of a polygon map to its congruent parts under a rotation or reflection. |
G-CO.3, G-CO.12, G-CO.13 |

Geometry |
1 |
Big Idea 4: Corresponding parts of congruent polygons are congruent. |
G-CO.2, G-CO.4, G-CO.5, G-CO.6, G-CO.7, G-CO.12 |

Geometry |
1 |
Big Idea 5: SSS, SAS, and ASA are sufficient criteria to justify triangle congruence. |
G-CO.5, G-CO.6, G-CO.7, G-CO.8, G-CO.12 |

Geometry |
2 |
Big Idea 1: Relationships between angles determine whether lines are parallel. |
G-CO.9, G-CO.12 |

Geometry |
2 |
Big Idea 2: Angle relationships determine properties about triangles. |
G-CO.10, G-CO.12 |

Geometry |
2 |
Big Idea 3: Two triangles can be proven congruent based on the order of their corresponding, congruent sides and angles. |
G-CO.7, G-CO.10 |

Geometry |
2 |
Big Idea 4: Properties of parallel lines and triangles determine the characteristics of polygons. |
G-CO.11 |

Geometry |
2 |
Big Idea 5: A quadrilateral can be classified based on the relationship between its diagonals. |
G-CO.9, G-CO.10, G-CO.11, G-CO.13 |

Geometry |
3 |
Big Idea 1: A dilated figure has angles congruent to and sides proportional to the original figure. |
G-CO.2, G-CO.5, G-CO.6, G-CO.7, G-CO.12, G-SRT.1, G-SRT.2, G-SRT.3, G-SRT.5 |

Geometry |
3 |
Big Idea 2: Congruent corresponding angles and proportional corresponding sides are used to prove triangles are similar. |
G-CO.5, G-CO.10, G-CO.12, G-SRT.2, G-SRT.4, G-SRT.5 |

Geometry |
3 |
Big Idea 3: Medians, altitudes, or perpendicular bisectors intersect at a point of concurrency uniquely positioned in relation to the triangle. |
G-CO.10, G-CO.12, G-SRT.4, G-SRT.5 |

Geometry |
4 |
Big Idea 1: Corresponding sides of similar triangles prove the Pythagorean Theorem is true for all right triangles. |
G-SRT.4, G-SRT.5, G-SRT.8, G-GMD.1, G-GMD.3 |

Geometry |
4 |
Big Idea 2: Sine, Cosine, and Tangent are constant ratios that relate the angles and sides of a right triangle. |
G-SRT.6, G-SRT.7, G-SRT.8, G-GMD.1, G-GMD.3 |

Geometry |
5 |
Big Idea 1: Physical objects can be described using 1-D, 2-D and 3-D geometric objects. |
G-GMD.1, G-GMD.3, G-MG.1, G-MG.3 |

Geometry |
5 |
Big Idea 2: Three dimensional objects are composed of several two dimensional shapes. |
G-GMD.3, G-GMD.4, G-MG.1, G-MG.2, G-MG.3 |

Geometry |
6 |
Big Idea 1: Line segment relationships are determined by length and direction on the coordinate plane. |
G-CO.6, G-SRT.1, G-SRT.2, G-GPE.5, G-GPE.6 |

Geometry |
6 |
Big Idea 2: A polygon is categorized by the length and direction of its line segments on the coordinate plane. |
G-CO.6, G-CO.10, G-CO.11, G-SRT.1, G-SRT.2, G-GPE.4, G-GPE.5, G-GPE.6, G-GPE.7 |

Geometry |
7 |
Big Idea 1: A circle is uniquely defined in the coordinate plane using its center and radius. |
G-CO.12, G-SRT.5, G-C.1, G-GPE.1, G-GPE.4 |

Geometry |
7 |
Big Idea 2: There is a constant proportional relationship between an angle and its arc measures on a circle. |
G-CO.12, G-SRT.5, G-C.2, G-C.5 |

Geometry |
7 |
Big Idea 3: Congruence and similarity criteria prove relationships between segments and figures of a circle. |
G-CO.12, G-CO.13, G-SRT.5, G-SRT.8, G-C.2, G-C.3, G-MG.1, G-MG.3 |