Standards

This page contains a list of all of the standards associated with each Big Idea of our curriculum, sorted by Course and Unit. If you want to just look at one course and unit, choose them using the drop-downs below and click on Apply.

Course Unit Title Standards
Algebra I 1 Big Idea 1: The relationship between the variables of a function can be represented visually by a graph. N-Q.1, N-Q.2, N-Q.3, F-IF.1, F-IF.4, F-IF.5, F-LE.1, F-LE.1b, F-LE.3, F-LE.5
Algebra I 1 Big Idea 2: Functions can be represented in multiple, equivalent ways. N-Q.1, N-Q.3, F-IF.1, F-IF.2, F-IF.4, F-IF.5, F-IF.9, F-LE.1, F-LE.1b, F-LE.3
Algebra I 1 Big Idea 3: Rate of change describes how one quantity changes with respect to another. F-IF.4, F-IF.6, F-IF.9, F-LE.1, F-LE.1b, F-LE.3, F-LE.5, S-ID.7
Algebra I 1 Big Idea 4: Function families share similar graphs, behaviors, and properties. N-Q.2, F-IF.4, F-BF.3, F-LE.1, F-LE.1b, F-LE.3, F-LE.5
Algebra I 2 Big Idea 1: A function’s rate of change and initial value determine its other properties and behaviors. F-IF.3, F-IF.4, F-IF.6, F-IF.7a, F-IF.7b, F-LE.1, F-LE.1a, F-LE.1b, F-LE.5
Algebra I 2 Big Idea 2: Functions can be represented in multiple, equivalent ways. F-IF.2, F-IF.3, F-IF.4, F-IF.6, F-IF.7, F-IF.7a, F-IF.7b, F-BF.3, F-LE.1, F-LE.1b, F-LE.5
Algebra I 2 Big Idea 3: Function rules describe the quantitative relationships between variables. F-IF.2, F-IF.3, F-IF.4, F-BF.1, F-BF.1a, F-BF.3, F-LE.1, F-LE.1a, F-LE.1b, F-LE.2, F-LE.5
Algebra I 2 Big Idea 3: Functions within a family are transformations of the parent function. F-IF.2, F-IF.3, F-IF.4, F-BF.1, F-BF.1a, F-LE.1, F-LE.1a, F-LE.1b, F-LE.2, F-LE.5
Algebra I 3 Big Idea 1: Linear functions are characterized by a constant rate of change. A-SSE.1, A-SSE.1a, A-SSE.1b, A-CED.1, A-CED.3, A-REI.11
Algebra I 3 Big Idea 2: A solution is a value that makes a function rule true. A-SSE.1, A-SSE.1a, A-SSE.1b, A-CED.1, A-CED.3, A-CED.4, A-REI.1, A-REI.3, A-REI.11
Algebra I 3 Big Idea 3: Linear functions can be represented in multiple, equivalent ways. A-SSE.1, A-SSE.1a, A-SSE.1b, A-APR.1, A-CED.1, A-CED.3, A-CED.4, A-REI.3, A-REI.11
Algebra I 4 Big Idea 1: Systems of Equations (or Inequalities) contain functions that share the same set of variables. A-CED.2, A-CED.3, A-REI.10, A-REI.11, A-REI.12
Algebra I 4 Big Idea 2: A solution simultaneously makes each function rule in a system of equations (or inequalities) true. A-CED.3, A-CED.4, A-REI.5, A-REI.6, A-REI.10, A-REI.11, A-REI.12
Algebra I 4 Big Idea 3: The solution to a system of equations (or inequalities) can be represented in multiple, equivalent ways. A-CED.3, A-CED.4, A-REI.10, A-REI.11
Algebra I 5 Big Idea 1: Quadratic functions are distinguished by a power of 2. F-IF.4, F-IF.5, F-IF.6, F-IF.7, F-IF.7a, F-IF.8, F-IF.9, F-BF.1, F-BF.1a
Algebra I 5 Big Idea 2: Equivalent representations of a function highlight different properties. F-IF.2, F-IF.3, F-IF.4, F-IF.6, F-IF.7, F-IF.7a, F-IF.7b, F-IF.9, F-LE.1, F-LE.1b, F-LE.5
Algebra I 5 Big Idea 3: Functions within a family are transformations of the parent function. F-IF.4, F-IF.5, F-IF.7, F-IF.7a, F-IF.8, F-BF.1, F-BF.1a, F-BF.3
Algebra I 6 Big Idea 1: Quadratic expressions can be written in multiple, equivalent ways. A-SSE.1a, A-SSE.1b, A-SSE.2, A-SSE.3, A-SSE.3a, A-SSE.3c, A-APR.1
Algebra I 6 Big Idea 2: Quadratic functions have 0, 1 or 2 real roots. N-RN.3, A-SSE.1, A-SSE.1a, A-SSE.1b, A-SSE.2, A-SSE.3, A-SSE.3a, A-APR.3, A-CED.1, A-REI.4, A-REI.4b
Algebra I 6 Big Idea 3: Quadratic equations can be solved by rearranging the equation into an equivalent form. A-SSE.1a, A-SSE.1b, A-SSE.2, A-SSE.3, A-SSE.3b, A-CED.1, A-REI.4, A-REI.4a, A-REI.4b
Algebra I 6 Big Idea 4: Quadratic functions can be represented in multiple, equivalent ways. A-SSE.1, A-SSE.1a, A-SSE.1b, A-SSE.2, A-SSE.3, A-SSE.3a, A-SSE.3b, A-APR.1, A-APR.3, A-CED.1, A-REI.4, A-REI.4a, A-REI.4b
Algebra I 7 Big Idea 1: Measures of center are used to interpret univariate data. S-ID.1, S-ID.2, S-ID.3
Algebra I 7 Big Idea 2: Visual models illustrate the correlation of bivariate data. S-ID.5, S-ID.6, S-ID.6a, S-ID.6b, S-ID.6c, S-ID.7, S-ID.8, S-ID.9
Algebra II 1 Big Idea 1: Function families share similar graphs, behaviors, and properties. F-IF.4, F-IF.7c
Algebra II 1 Big Idea 2: Mathematical models illustrate the behavior of real-world situations. F-IF.4, F-IF.6, F-BF.1a, F-BF.1b, F-LE.2, F-LE.5
Algebra II 1 Big Idea 3: Functions can be represented in multiple, equivalent ways. F-IF.4, F-IF.6, F-IF.7, F-IF.7c, F-IF.9, F-BF.1, F-BF.1a, F-BF.1b, F-LE.2, F-LE.5
Algebra II 1 Big Idea 4: An inverse function is a function that “undoes” another function; if f(x) maps x to y, then f-1(x) maps y back to x. A-REI.1, A-REI.2, F-IF.4, F-BF.4, F-BF.4a, F-BF.4b, F-BF.4c, F-BF.4d
Algebra II 1 Big Idea 5: Functions within a family are transformations of the parent function. F-IF.4, F-BF.3
Algebra II 2 Big Idea 1: Sequences are discrete functions defined by their rates of change. F-IF.3, F-BF.1a, F-BF.2, F-LE.2, F-LE.5
Algebra II 2 Big Idea 1: Sequences are discrete functions defined by their rates of change. F-IF.3, F-BF.2, F-LE.2
Algebra II 2 Big Idea 2: Exponential functions describe a common ratio at which variables change. N-RN.2, F-IF.7e, F-IF.8b, F-LE.2, F-LE.5
Algebra II 2 Big Idea 2: Expressions can be written in multiple, equivalent ways. N-RN.1, N-RN.2, A-SSE.3c, F-IF.8b
Algebra II 2 Big Idea 3: Expressions with exponents can be written in multiple, equivalent ways. N-RN.1, N-RN.2, A-SSE.3, A-SSE.3c, F-IF.8, F-IF.8b, F-BF.1, F-BF.1a, F-LE.2, F-LE.5
Algebra II 2 Big Idea 4: A logarithm is the inverse of an exponential function. F-IF.7, F-IF.7e, F-IF.8, F-BF.1, F-BF.4a, F-BF.4b, F-BF.4c, F-BF.5, F-LE.2, F-LE.4
Algebra II 2 Big Idea 5: Mathematical models illustrate the behavior of real-world situations. A-SSE.3, A-SSE.3c, A-SSE.4, F-BF.1, F-BF.1a, F-BF.2, F-BF.5, F-LE.2, F-LE.4, F-LE.5
Algebra II 3 Big Idea 1: The features of a periodic function repeat over a constant interval. F-IF.4, F-IF.7e
Algebra II 3 Big Idea 2: A circle is symmetrical and its points are related by a center and radius. F-TF.1, F-TF.8
Algebra II 3 Big Idea 3: The Unit Circle illustrates properties of trigonometric functions. F-TF.1, F-TF.2, F-TF.8
Algebra II 3 Big Idea 4: Trigonometric functions are characterized by the period and amplitude. F-IF.4, F-IF.7e, F-TF.2, F-TF.5
Algebra II 4 Big Idea 1: The degree of a polynomial function determines its behaviors and properties. N-CN.9, A-APR.3, F-IF.4, F-IF.9, F-BF.3
Algebra II 4 Big Idea 2: The structure of quadratic graphs and equations gives insights into their roots. N-CN.1, N-CN.2, N-CN.7, A-SSE.2, A-APR.3, A-REI.1, A-REI.2, A-REI.4, A-REI.4b
Algebra II 4 Big Idea 3: The structure of polynomial graphs and equations gives insights into their roots. N-CN.1, N-CN.2, N-CN.9, A-SSE.2, A-APR.2, A-APR.3, A-REI.1
Algebra II 4 Big Idea 4: Mathematical models illustrate the behavior of real-world situations. A-SSE.4, A-APR.4, A-CED.1, A-REI.1, A-REI.6, A-REI.7, A-REI.11, G-GPE.2
Algebra II 4 Big Idea 5: Rational functions describe the quotient of two polynomial functions. A-SSE.2, A-APR.2, A-APR.3, A-APR.6, A-CED.1, A-REI.1, A-REI.2, A-REI.4, A-REI.4b, F-BF.1, F-BF.1b
Algebra II 5 Big Idea 1: The accuracy of a prediction of a random event increases with the number of events considered. N-Q.2, S-CP.1, S-CP.2, S-CP.3, S-CP.4, S-CP.5, S-CP.6, S-CP.7, S-CP.8, S-MD.2, S-MD.3
Algebra II 5 Big Idea 2: Probability calculations can be applied to solve problems and make decisions. N-Q.2, S-CP.4, S-CP.5, S-CP.6, S-CP.7, S-MD.2, S-MD.3, S-MD.4, S-MD.5, S-MD.5a, S-MD.5b, S-MD.6
Algebra II 6 Big Idea 1: Measures of center are used to interpret univariate data. S-ID.1, S-ID.2, S-ID.3, S-ID.4, S-ID.5, S-ID.6
Algebra II 6 Big Idea 2: Visual models illustrate the correlation of bivariate data. S-ID.4, S-ID.5, S-ID.6, S-ID.6a, S-ID.7, S-ID.8, S-ID.9, S-IC.1, S-IC.2, S-IC.4, S-IC.5
Algebra II 6 Big idea 3: Statistical data from random processes can be predicted using probability calculations. S-IC.1, S-IC.3, S-IC.4, S-IC.5, S-IC.6
Geometry 1 Big Idea 1: Congruent segments have equal measure. G-CO.1, G-CO.2, G-CO.12
Geometry 1 Big Idea 2: Congruent angles have equal angle measure. G-CO.1, G-CO.2, G-CO.12
Geometry 1 Big Idea 3: Congruent parts of a polygon map to its congruent parts under a rotation or reflection. G-CO.3, G-CO.12, G-CO.13
Geometry 1 Big Idea 4: Corresponding parts of congruent polygons are congruent. G-CO.2, G-CO.4, G-CO.5, G-CO.6, G-CO.7, G-CO.12
Geometry 1 Big Idea 5: SSS, SAS, and ASA are sufficient criteria to justify triangle congruence. G-CO.5, G-CO.6, G-CO.7, G-CO.8, G-CO.12
Geometry 2 Big Idea 1: Relationships between angles determine whether lines are parallel. G-CO.9, G-CO.12
Geometry 2 Big Idea 2: Angle relationships determine properties about triangles. G-CO.10, G-CO.12
Geometry 2 Big Idea 3: Two triangles can be proven congruent based on the order of their corresponding, congruent sides and angles. G-CO.7, G-CO.10
Geometry 2 Big Idea 4: Properties of parallel lines and triangles determine the characteristics of polygons. G-CO.11
Geometry 2 Big Idea 5: A quadrilateral can be classified based on the relationship between its diagonals. G-CO.9, G-CO.10, G-CO.11, G-CO.13
Geometry 3 Big Idea 1: A dilated figure has angles congruent to and sides proportional to the original figure. G-CO.2, G-CO.5, G-CO.6, G-CO.7, G-CO.12, G-SRT.1, G-SRT.2, G-SRT.3, G-SRT.5
Geometry 3 Big Idea 2: Congruent corresponding angles and proportional corresponding sides are used to prove triangles are similar. G-CO.5, G-CO.10, G-CO.12, G-SRT.2, G-SRT.4, G-SRT.5
Geometry 3 Big Idea 3: Medians, altitudes, or perpendicular bisectors intersect at a point of concurrency uniquely positioned in relation to the triangle. G-CO.10, G-CO.12, G-SRT.4, G-SRT.5
Geometry 4 Big Idea 1: Corresponding sides of similar triangles prove the Pythagorean Theorem is true for all right triangles. G-SRT.4, G-SRT.5, G-SRT.8, G-GMD.1, G-GMD.3
Geometry 4 Big Idea 2: Sine, Cosine, and Tangent are constant ratios that relate the angles and sides of a right triangle. G-SRT.6, G-SRT.7, G-SRT.8, G-GMD.1, G-GMD.3
Geometry 5 Big Idea 1: Physical objects can be described using 1-D, 2-D and 3-D geometric objects. G-GMD.1, G-GMD.3, G-MG.1, G-MG.3
Geometry 5 Big Idea 2: Three dimensional objects are composed of several two dimensional shapes. G-GMD.3, G-GMD.4, G-MG.1, G-MG.2, G-MG.3
Geometry 6 Big Idea 1: Line segment relationships are determined by length and direction on the coordinate plane. G-CO.6, G-SRT.1, G-SRT.2, G-GPE.5, G-GPE.6
Geometry 6 Big Idea 2: A polygon is categorized by the length and direction of its line segments on the coordinate plane. G-CO.6, G-CO.10, G-CO.11, G-SRT.1, G-SRT.2, G-GPE.4, G-GPE.5, G-GPE.6, G-GPE.7
Geometry 7 Big Idea 1: A circle is uniquely defined in the coordinate plane using its center and radius. G-CO.12, G-SRT.5, G-C.1, G-GPE.1, G-GPE.4
Geometry 7 Big Idea 2: There is a constant proportional relationship between an angle and its arc measures on a circle. G-CO.12, G-SRT.5, G-C.2, G-C.5
Geometry 7 Big Idea 3: Congruence and similarity criteria prove relationships between segments and figures of a circle. G-CO.12, G-CO.13, G-SRT.5, G-SRT.8, G-C.2, G-C.3, G-MG.1, G-MG.3